Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(3): e0213781, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30921346

RESUMO

During mammalian pregnancy and lactation, the maternal demand for calcium is increased to satisfy fetus and newborn skeletal growth. In addition to the dietary intake, females use the calcium contained in their bones to supply this increased demand, leading to a decrease in maternal bone mineral content. In reproductive insectivorous female bats, bone loss has been described as a physiological cost of reproduction, due to the reported increased risk of bone fracture. This physiological cost may be the mechanism underlying the conflict between increasing litter size and maintaining wing skeletal integrity, which would help to explain the small litter size of most bat species. If bone loss is a linking cost between reproduction and survival in bats, and most bat species have small litter sizes, one would expect to find a loss of bone and an increasing probability of bone fracture during pregnancy and lactation in other non-insectivorous bats. In this study, we tested for the existence of this cost in the Great-fruit eating bat, Artibeus lituratus. We analyzed trabecular structure, bone strength and bone mineral content for the humerus bone, hypothesizing that bone loss during reproduction in females would increase the risk of fracture. Our results showed a decrease of 22-31% in bone trabecular area in lactating females, rapidly compensated following weaning. Bone strength did not differ among reproductive and non-reproductive groups and seems to be more influenced by bone organic components rather than mineral contents. Since we observed bone loss during reproduction yet the humerus strength seems to be unaffected, we suggest that bone loss may not represent a physiological cost during reproduction for this frugivorous bat.


Assuntos
Osso Esponjoso/metabolismo , Quirópteros/fisiologia , Reprodução/fisiologia , Animais , Peso Corporal , Densidade Óssea , Osso Esponjoso/química , Osso Esponjoso/patologia , Quirópteros/crescimento & desenvolvimento , Força Compressiva , Feminino , Lactação , Gravidez
2.
Reprod Fertil Dev ; 30(5): 681-688, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29136400

RESUMO

Large amounts of calcium are required during pregnancy and lactation to support fetal and neonatal bone growth and calcification. An inadequate supply of calcium during these stages can lead to unsuccessful reproduction or impaired offspring fitness. During reproduction, female mammals undergo numerous physiological changes, including adaptations to allow an adequate supply of calcium. The lack of quantitative studies analysing these physiological changes from a comparative perspective limits our ability to explain and understand these adaptations. Herein, we present our meta-analysis of studies reporting changes in bone turnover and calcium homeostasis during pregnancy and lactation in 14 species of mammals. Our meta-analysis of 60 studies showed that all species have a similar pattern of physiological changes during pregnancy and lactation, which include: (1) decreased serum calcium concentrations; (2) bone tissue loss; (3) decreased serum calcitonin and parathyroid hormone concentrations; and (4) increased serum calcitriol concentration, regardless of changes in parathyroid hormone concentrations. In addition, we found a negative relationship between: (1) serum calcium concentrations and the number of teats; and (2) serum parathyroid hormone concentrations and litter mass.


Assuntos
Remodelação Óssea/fisiologia , Cálcio/sangue , Homeostase/fisiologia , Lactação/fisiologia , Animais , Calcitonina/sangue , Calcitriol/sangue , Feminino , Humanos , Mamíferos , Hormônio Paratireóideo/sangue , Gravidez
3.
Inorg Chem ; 36(7): 1495-1503, 1997 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-11669731

RESUMO

The macrocyclic ligand DO2A (1,4,7,10-tetraazacyclododecane-1,7-bis(acetic acid)) was prepared and used as a building block for four new macrocyclic ligands having mixed side-chain chelating groups. These ligands and their complexes with Mg(II), Ca(II), and Ln(III) were studied extensively by potentiometry, high-resolution NMR, and water proton relaxivity measurements. The protonation constants of all compounds compared well with those of other cyclen-based macrocyclic ligands. All Ca(II) complexes were found to be more stable than the corresponding Mg(II) complexes. Trends for the stabilities of the Ln(III) complexes are discussed and compared with literature data, incorporating the effects of water coordination numbers, Ln(III) contraction, and the nature of the side chains and the steric hindrance between them. (1)H NMR titrations of DO2A revealed that the first and second protonations take place preferentially at the secondary ring nitrogens, while the third and fourth involved protonation of the acetates. (17)O NMR shifts showed that the DyDO2A(+) complex had two inner-sphere water molecules. Water proton spin-lattice relaxation rates for the GdDO2A(+) complex were also consistent with water exchange between bulk water and two inner-sphere Gd(III) coordination positions. Upon formation of the diamagnetic complexes of DO2A (Ca(II), Mg(II), La(III), and Lu(III)), all of the macrocyclic ring protons became nonequivalent due to slow conformational rearrangements, while the signals for the acetate CH(2) protons remained a singlet.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA